返回

第一百三十三章 张硕:你是要和我讨论数学问题?(二合一大章)

首页
关灯
护眼
字:
上一章 回目录 下一页 进书架
最新网址:wap.qiqixs.net
    在去首都之前,张硕一直在研究费米子哈伯德模型的简化计算问题,但并不是专注于研究任务,大部分时间还是看各种资料来增加自己的知识量。

    当对相关知识有足够多的了解,再以数学分析手段去进行研究就是事半功倍了。

    现在任务进度接近‘70%’,速度可以说非常快了。

    这和NS方程数值模拟的研究也有关系。

    NS方程数值模拟中的一些方法框架、一些想法框架,也可以用在物理模型计算模拟的简化上。

    数学模型和偏微分方程的研究不一样。

    偏微分方程,以数学角度去进行研究,就是纯粹的数学问题。

    物理现象的数学模型,则要从物理描述的理解开始。

    数学模型比方程要复杂的多,仅仅是模型表达的含义都需要理解很多的问题,也因为模型太过于复杂,单纯以数学的方式是研究不了的。

    所以,简化算法的研究要从物理方向的理解开始。

    费米子哈伯德模型上,每一个参数都对应一种物理表达,以物理方向的理解着手,就无法再进行简化。

    这就是矛盾之处。

    模型表达太复杂,以纯数学的方法无法做研究,但物理方向上又无法再进行简化。

    张硕已经找到了明确的方向,并且研究的已经很深入,初始就是对费米子哈伯德模型的哈密顿量进行分析。

    哈密顿量是所有粒子的动能的总和加上与系统相关的粒子的势能,对于不同的情况或数量的粒子,哈密顿量是不同的,因为它包括粒子的动能之和以及对应于这种情况的势能函数。

    研究本身是对于计算模拟的简化,并不是对于费米子哈伯德模型的简化,所以针对模型的哈密顿量进行研究,考虑的方向也是如何运算才能简化整体的计算过程。

    以物理角度的理解,对哈密顿量的分析,再考虑运算问题,等等,一系列的研究,最终目的都只有一个——

    数值计算!

    费米子哈伯德模型,可以简单理解为‘对超导体内电子状态的描述’。

    模型的数值计算,也就是通过计算得知超导体内电子的即时状态。

    有关费米子哈伯德模型的数值计算,国际上已经有很多的研究,包括集合量子蒙特卡洛、张量重正化群等,都是数值分析手段。

    张硕看了很多的资料,他的研究主要在两个方向上,一个是计算模拟。

    一個是数值法。

    NS方程计算模拟的研究中,有一部分方法框架可以用在数学模型的计算模拟简化上,但前提是完成数值法的研究。

    所以两者还是一个研究。

    数值法,也就是对费米子哈伯德模型进行数值求解,类似的研究已经有很多了,但没有任何一种方法可以简化数值求解。

    张硕找到了一种方法,并命名为‘多重无穷尽离散分析’。

    多重无穷尽离散分析,并不是做无穷尽的计算,而是进行列举计算,计算的越多分析的数值结果就越准确。

    这就像是找一个最接近一的数字。

    在进行一次分析后,得出的结果是0.9;进行两次分析得出的结果是0.99;三次分析结果是0.999……

    无穷尽,不断的接近。

    这会让数值法变得更精准,若是只进行接近性的计算,计算量相对会小很多倍,计算模拟也就得到了简化。

    ……

    整整一周时间,张硕都专注于费米子哈伯德模型的研究中。

    当专注进行研究的时候,再加上‘氪币’带来的方向指引,任务进度增长就会很快,进度已经提升到了‘91%’。

    张硕每天都会查看进度,他对于进度的增长感觉很平淡,甚至觉得相对有些慢了。

    “一个星期,七天,进度增长21%多一点,换算下来每天只增长3%。”

    “3%,相对于‘6’个科研币。”

    他考虑的是NS方程奇点问题的研究。

    NS方程奇点问题,需要的科研币数量达到了7000个,每天六个科研币的进度,算下来就需要三年才能完成。

    相对于NS方程论证的难度以及影响力来说,三年时间并不长,甚至说非常的短暂,但能短时间完成当然是最好的。

    “还是有些着急了……”

    张硕思索着摇了摇头,他一直以来做研究的速度都很快,想到一个研究需要三年的时间,就感觉很漫长。

    他暗自提醒自己,“还是应该放平心态,不能总是想一口吃个胖子。”

    张硕放下手头的工作,打开邮箱随意看了几眼,就发现有十几封邀请邮件。

    有些是国外高校和科研机构的邀请,邀请他去做讲座,邀请他过去参观,甚至直白的说,希望他能过去工作。

    还有一些是国内的邮件,也同样是科研机构和高校的邀请。

    类似的邮件,不回复就有些不礼貌了。

    张硕还是耐下心写了两个版本的回复邮件,一种是中文版本,一种是英文版本,但表达的意思都是一样的——

    “感谢邀请。

    本人最近工作非常忙,没有时间和精力去考虑其他问题。

    很抱歉,再次感谢。”

    在完成了邮件以后,他直接分两批进行统一回复,然后就半躺在椅子上刷起了手机。

    一段时间没注意,他的网络账号粉丝已经超过五十万了。

    网络账号,粉丝量百万是一个门槛。

    五十万粉丝,相对来说还是有些少,但要知道他的账号极少发布内容,注册以来,总结也只发过三条信息,直接可以归在‘不活跃’行列中。

    即便如此,关注数量还是不断增长。

    账号上也有很多新消息,都是各种点赞、转发、评论。

    私信,倒是没有。

    张硕设置了只接受关注人私信,而他关注的就只有孙兴利一人,显然是不可能收到私信的。

    评论倒是有很多,都是在他发的信息下的留言。

    他打开了新评论消息界面,本来只是想把新消息变成已读,发现最上面的一条询问,顿时来了点兴趣。

    “张硕教授,请问你研究的NS方程计算模拟中的方法,能不能用在复杂数学模型上了?”

    这条消息来自一个很普通的账号,名字就是一大串字母,上面什么资料都没有,但能做出这种提问,显然对NS方程计算模拟方法有了解。

    张硕给了个反问式的回复,“比如呢?”

    他回复后就在广场上刷刷信息,没想到对方很快有了新回复,“费米子哈伯德模型?”

    张硕顿时一愣,旋即回消息道,“你在研究这个?”

    对面快速回复,“不是研究,是会用到。”

    “可以。”

    张硕发了两个字,随后又补充一句,“是什么样的研究?”

    对方回复道,“关注下我,私信聊!”

    张硕点了下关注,对方很快发来了私信,也说起了本人的身份,是科学院超导实验室的研究员苏志国。

    苏志国解释道,“我们研究的是非常规超导电性发生机制与电子-电子自旋相互作用的关系。”

    “主要针对的是铜氧化物进行研究,但是涉及到电子-电子自旋相互作用,好多实验问题就要牵扯到复杂的数学模型计算。”

    “我们用大型计算机模拟计算效果非常差,如果费米子哈伯德模型,也能像是NS方程那样做计算模拟就好了。”

    苏志国给张硕留言也只是随意问上一句,现在也只是和张硕聊上几句,根本没想过张硕能有什么方法。

    费米子哈伯德模型的计算模拟,是量子计算机研究的学术性课题,也是国际级别的超级难题。

    哪怕只是数值求解

    (本章未完,请点击下一页继续阅读)
最新网址:wap.qiqixs.net
上一章 回目录 下一页 存书签